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The field-driven Kawasaki model with a fraction p admixture of Glauber 
dynamics is studied by computer simulation: p = 0  corresponds to the order- 
parameter-conserving driven diffusive system, while p = 1 is the equilibrium 
Ising model. For p = 0.1 our best estimates of critical exponents based on a 
system of size 4096x 128 are /~,-~0.22, t/RS~0.45, and vLi~v• These 
exponents differ from both the values predicted by a field-theoretic method for 
p = 0 and those of the equilibrium Ising model. Anisotropic finite-size scaling 
analyses are carried out, both for subsystems of the large system and for fully 
periodic systems. The results of the latter, however, are inconsistent, probably 
due to the complexity of the size effects. This leaves open the possibility that we 
are in a crossover regime from p = 0 to p # 0 and that our critical exponents are 
"effective ones." For p = 0  our results are consistent with the predictions 

vii > v• 

KEY W O R D S :  Driven Kawasaki models; stochastic lattice gas; non- 
equilibrium phase transitions; computer simulations; finite-size scaling. 

1. I N T R O D U C T I O N  

Nonequilibrium steady states are still far from being well understood 
despite considerable study in recent years. (1-1~ In the "strongly driven" 
Kawasaki model in two dimensions, studied extensively in refs. 2, 5, and 9, 
exchanges of spins (or particle jumps) in the + x  direction, perpendicular 
to the field, are made with transition probabililties satisfying the usual 
detailed balance condition for a nearest neighbor ferromagnetic interaction 
j,(H) jumps which move particles along the field in the +z direction are 
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always made, and there are no jumps against the field. The system is thus 
out of equilibrium, maintaining (via periodic boundary condition) a 
steady-state current in the + z  direction; see ref. 9 for more details. 

While the nonequilibrium phase transition of this model is of par- 
ticular interest, (~2,13) its study by computer simulations (3 5, 8,9) is difficult for 
several reasons: (i) There is an extremely pronounced critical slowing 
down: it is predicted (12'~3) that transverse fluctuations relax with a dynamic 
critical exponent z• =4 .  (ii) The conservation law makes it difficult to 
obtain the order parameter and susceptibility (see Appendices A and B). 
(iii) There are complicated finite-size effects. 

The first two difficulties are avoided if we consider a modified model 
where, in addition to the exchanges according to the rules summarized 
above, one also allows for spin flips to occur a fraction p of the time, 
according to a Glauber flip rate. (14'15) This destroys the conservation law 
of the magnetization: now both the order parameter ( Ig t l )  and suscep- 
tibility Z can be straightforwardly sampled. Even for p as small as 0.1 the 
relaxation toward the steady state is distinctly faster than for the strictly 
conserved case ( p = 0 ) .  This model for p <  1 still exhibits a steady-state 
current, and thus its phase transition should belong to a class of non- 
equilibrium phase transitions, although presumably with exponents dif- 
ferent from those of the driven Kawasaki model and also from those of the 
standard Ising model equilibrium phase transition. Unfortunately, we pay 
for the computational advantages of this model with disadvantages: (i) 
Unlike the standard driven Kawasaki model, ~2'~3) there are no field- 
theoretic predictions available for this model. (ii) Since for p ~ 0 a cross- 
over to the driven Kawasaki model and for p ~ 1 a crossover to the 
standard equilibrium Ising model must occur, the critical region where the 
asymptotic behavior for values of p in between these limits occurs might be 
rather narrow. If for small p the critical behavior of the driven Kawasaki 
model is the same as for p = 0, it would serve our purpose; but if it were 
already dominated by the Ising critical behavior, no information would be 
gained about nonequilibrium steady states at p - -0 .  

In the following sections, we report results of extensive computer 
simulations at p = 0.1 and also some results at p = 0 and p = 0.5. A discus- 
sion is given at the end. 

2. DRIVEN K A W A S A K I  M O D E L  WITH p = 0 . 1  

2.1. Order Parameter  

We carried out simulations of the modified driven Kawasaki model 
with p = 0.1 on square lattices with sizes 8 x 8, 16 x 16, 32 • 32, 64 x 64, and 
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128 x 128. The updating of system states is typically 105 Monte Carlo steps 
per spin, with the first 104 steps discarded in a run, unless starting from a 
previous stationary state configuration. 

The modified dynamics enables us to calculate order parameters by 
computing the absolute value of the total magnetization or the square root 
of the second moment of the magnetization. The difference between the two 
is small [it is approximately Z/(2mN), where Z is the susceptibility and N 
is the size of the system], but the latter is numerically more accurate. By 
observing this, we find that the system orders at a temperature T c. We also 
noticed metastability problems for large systems when T <  To: once a 
domain wall (strip configuration) is formed, (5) it is very difficult to remove. 
So we always started with a configuration whose total magnetization is 
approximately the stationary state magnetization. 

Figure 1 is a plot of m = < ~T./2 > 1/2 VS. K = J /k  B T for various sizes. We 
see clearly an L -1 size dependence at high temperatures. This is similar to 

Fig. 1. 

'o.3o 0[32 0134 0136 013~ 01~0 
K 

Mean-root-square magnetization m vs. dimensionless inverse temperature K=  J / k  a T 

for sizes (D) 8x8, (O) 16x 16, (A) 32x32, (+ )  64x64, ( x )  128x 128. 
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equilibrium behavior and indicates an approximate independent distribu- 
tion for blocks of spins with linear dimensions larger than the correlation 
length. At low temperatures finite-size effects are small and the order 
parameter appears to converge to its infinite-volume limit very fast. This is 
in contrast to the result of Vall6s and Marro (ref. 5, Fig. 5a) for p = 0, 
where the order parameter, defined in a different way (see Appendix B), 
shows large finite-size effects both above and below the transition tem- 
perature. The low-temperature finite-size effects in their model are clearly 
due to the conservative nature of the dynamics at p = 0. Near the phase 
transition the finite-size effect is complicated also for p C 0  due to 
anisotropy. Finite-size scaling analysis will be presented in later subsec- 
tions. 

Figure 2 is a plot of rn 1/~ vs. K for a system of size 128 x 128, taking 
for/3 the mean-field value 1/2, the two-dimensional Ising value 1/8, and the 

0.34 0,36 0.38 0,40 0.42 0,44 0,46 0,48 0,50 

K 

Fig. 2. ml/t~vs. K for different values of/~. The top curve corresponds to/~ = 1/2; the bot tom 
curve t o / ~ =  1/8; the middle one to/~ =0.22. The data are from a 128 x 128 system. 
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empirical value 0.22, respectively. We see from the plot that for K > 0.4 the 
curve for/~ = 1/8 becomes a straight line. This might have something to do 
with crossover to Ising behavior. For  K < 0 . 3 6  the data are not very 
reliable due to finite-size effects. Relying on the data between 0.36 and 0.40, 
we perform a least-square fit to a form 

m=a[K-Kc[< (1) 

Such a fit leads to Kc = 0.343 __ 0.003 and /~ =0.22 _+ 0.02 (see also next 
section for different ways of finding To). Our result should be compared 
with/3 = 0.230-t-0.003 at p = 0 of Vall6s and Marro. (5) We cannot rule out 
the possibility that m behaves differently very close to T c. 

2.2. Correlat ion Functions 

We studied the pair correlation functions G •  < g~(0, 0)~U(x, 0)> 
and Gll(z)=<Vg(O,O)gt(O,z)> for a square with linear dimension 

% 

i0 ~ i0 ~ i0 ~ 

Z 

Fig. 3. Longitudinal two-point correlation function plotted in log-log scale for system of size 
64x 64. Note that due to the periodic boundary conditions Gll(z ) = G l l ( L m a x - Z  ) and thus 
only distances z <Lmax/2 have been included. Various inverse temperatures are shown, as 
indicated in the figure. 
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Lmax = 64 (see Figs. 3 and 4). One can see that both types of correlations 
indicate that the system is ordered for K~> 0.35 and disordered for K~< 0.34. 
To obtain more quantitative results about Tc and various critical 
exponents we need to minimize the finite-size effect. Knowing that the 
system can be highly anisotropic, we investigated a large system of size 
4096 x 128. To locate Tc accurately, we performed simulation at K =  0.343, 
0.342, 0.341, and so on. Figures 5 and 6 show longitudinal and transverse 
correlation functions on lo~ log  plots. From the plots we see that Kc is 
somewhere between 0.341 and 0.343, consistent with the previous results on 
smaller systems. 

To our surprise, the slopes of the straight lines for both longitudinal 
and transverse correlations at K closest to Kc give exponents t/~ s'~ RS 
0.45+0.05. For comparison, the field-theoretic results for p = 0  are 
t/~s=2/3, t /RS=2,(12 '13)  while the p =  1 standard Ising model value is 
r/= 1/4. It is very convincing that t/ks ,~ 0.45. The power-law decay is dis- 
played in a range from z = 4 to 100 [the distance z can actually start from 

Fig. 4. 

i 0  ~ i 0  ~ i 0  ~ 
X 

Transverse correlation function plotted in log-log scale for a system of size 64 x 64. 
Note the difference in coordinate scales as compared to Fig. 3. 
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1, but we measured Gll(z ) only at z a multiple of 4; see Fig. 3]. On the 
other hand, the power-law behavior for the transverse correlation function 
is in a narrow range, from x = 3 to 13, and the initial decay (x ~< 2) of the 
transverse correlation is very fast and does not follow the long-distance 
power law. At very large distances both transverse and longitudinal 
correlation functions tend to the same nonzero constants, which depend on 
temperature and are somewhat different from run to run. This, we think, 
is due to the fact that (g t2)  is nonzero even at Tc for finite systems and/or 
to the system not being in a stationary state at large scales. 

We note that although the exponents t/~ s and t/Rs seem to be the 
same, the amplitudes of the power-law decays are quite different. The effect 
of anisotropy is thus reflected in the amplitudes only, if this interpretation 
of the data is correct. In fact, the correlation functions can be described at 
Tc by G:_(x)~O.16x -~, Gll(z)~O.15(z/lO)-~ with t/=0.45. This suggests 
that p = 0.1 is the right scaling factor for the field direction. 

% 

~ 1 0  o ' . , . ,  ~ . ~ , ,  i , 0 a  

Z 

Fig. 5. Longitudinal correlation functions plotted in log-log scale for a system of size 
4096 x 128 at dimensionless inverse temperature K =  J/k  B T =  0.343, 0.342, 0.341, 0.340, 0.339, 
0.337, 0.33, 0.32, 0.31, 0.30, 0.28, and 0.25, from top to bottom, respectively. 
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Figures 7a and 8a are semilog plots of longitudinal and transverse 
correlation functions. There are fast, nonexponential, decays at short 
distances. The correlation functions appear nonexponential even at large 
distances except at very high temperatures, where the system has to have 
exponential decay behavior whenever p ~ 0 .  (For p = 0 ,  the correlation 
function behaves like r -2 at high temperature. (9)) Normalizing the correla- 
tion function by the critical power law gives better exponential behavior, as 
can be seen by comparing Fig. 7a and Fig. 7b or Fig. 8a and Fig. 8b, where 
in Fig. 7b Gil(z ) is multiplied by z ~ and in Fig. 8b G• is multiplied by 
X 0'44. The correlation lengths ~ll and ~• extracted from the slope of the 
straight lines in these figures are plotted in Fig. 9 vs. (Kc-K)/Kc on a 
log-log scale. This analysis gives v H ,,~ v• ~ 1.07. Although it appears that 
v• ~ vii, the correlation length r177 is, as mentioned before, only 0.1r In 
Fig. 10 we plot z'Tj~SGll vs. scaled variable z/~ H on a log-log scale. The data 
scale very well. Figure 11 is a similar plot for the transverse correlation 
function. By comparison with the longitudinal case, the quality of the data 
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Fig. 6. 
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Transverse correlation functions plotted in log log scale for a system of size 
4096 x 128 at same the K's as in Fig. 5. 
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Fig. 7. (a) Longitudinal correlation functions plotted in semilog scale for a system of size 
1024x 128 at same the K's as in Fig. 5. (b) Same as (a), except that GII is multipled by z ~ 
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Fig. 8. (a) Transverse correlation functions plotted in semilog scale for system of size 
1024 x 128 at the same K's as in Fig. 5. (b) Same as (a), except that G• is multipled by x ~ 
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is much worse. We omitted data points at x = 1, which clearly do not obey 
scaling. 

In summary, this analysis of correlation functions supports isotropic 
exponents with anisotropic amplitudes. For  a system with isotropic 
exponents in dimension d = 2 ,  the scaling relations 7 + 2 / ? = d v  and 
7 = ( 2 - t l ) v  imply v = 2/3/t/. Using / ~ 0 . 2 2  and q ~0.45, this would yield 
v ~ 1, consistent with the above direct analysis. 

2.3. Subsystem Scaling 

The direct analysis of the data presented in the previous section may 
be tainted by crossover effects. The quoted numbers for exponents may 
simply be "effective exponents," not characteristic of the true critical 
behavior. We therefore now apply the finite-size scaling theory for sub- 
systems with anisotropic critical exponents developed in ref. 16. Unlike 

10-2 1 0  -1 

(Kc-K) /Kc 

Fig. 9. Longitudinal correlation length ~ll (solid circles) and transverse correlation length r177 
(squares) vs. reduced temperature t= (Kc-K) /Kc  in log-log scale. Correlation lengths are 
extracted from Figs. 7b and 8b. The straight lines are given by ~ll = 1.37/-1"~ ~ z  = 0.14t-i"~ 
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finite-size scaling for isotropic systems, two lengths (longitudinal and trans- 
verse) have to be considered in the analysis. 

The advantage of considering subsystems of a large system 
(4096 x 128) is that data on various combinations of sizes can be obtained 
in a single run, while for fully periodic finite systems each size has to be 
simulated independently. The disadvantages are that "equilibration" of the 
whole system is difficult and finite-size effects due to finiteness of the large 
system occur and are not well understood. We discuss here the results of 
subsystem scaling. Fully periodic finite systems are presented later. 

A useful way to check the location of Tc when different sizes are 
available is to look at the reduced fourth moment of the magnetization g = 
( 3 -  < ~4>/< ~2>2)/2 for different subsystems. In Fig. 12a and 12b we plot 
g vs. K for sizes Lli = L• and Lll = L~.  The intersections give estimates for 
Kc. By comparing with runs on smaller lattices, we notice that a subsystem 
of size 32 x 32 already feels the finiteness of the whole system. If we con- 
sider only data from sizes 4 x 4, 8 x 8, 16 x 16, 16 x 4, and 64 x 8, the value 

'0 
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<3 
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i0 -2 i0 "~ i0 ~ I0 ~ 

Fig. 10. Scaling plot Z~ ) VS. 2/~1l , 



Driven Diffusive Systems with Exchanges 795 

K c is in the range 0.34i-0.344. This is consistent with our previous 
estimates from other data. 

The behavior of the size dependence would be simpler if one of the 
dimensions of the system is much larger than the other. More precisely, the 
susceptibility and magnetization at K c are given by (16) 

Z oc LIIL~ v•177 <l~/'[ > oc L ]  ~/v• LII ~ L ~  ~/v• (2)  

zoc t l t~(  v''-v• <lT'l>octJ/v~', til>>t~'/v• (3) 

Figure 13 is a plot of the subsystem susceptibility against L• for 
different Lil , plotted on a log2-1og2 scale. Figure 14 is a similar plot for the 
magnetization. The limiting behavior, Lit < L ~  '/~• is achieved relatively 
easily. From this limit we have 

y/v • - v ll/v • = 0.56 _ 0.06, ~/v • = 0.23 _+ 0.03 (4) 

The errors are estimated from the error in Kc and from the fact that Eq. (2) 
is only a p p r o x i m a t e l y  obeyed; the exponents depend slightly on the shorter 
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Fig. 11. Scaling plot x~177 vs. x/i• 
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Fig. 12. The fourth moments g of subsystems from a system of size 4096 x 128 vs. K. 
(a) Subsystems with LII =L• (e) L• (A) t, =8, (+) L.= 16. (b) Subsystems with 
t , = t ~ .  (E3) L• (0)  L.=8.  
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dimension [Lit in Eq. (2)] also. These exponents satisfy well the hyperscal- 
ing relation 2fl/v• + 7/v• = 1 + vti /v• The other limit, Ltl >> L ~  ~/vi, seems 
difficult to reach. We find, with large error bars, 7/viF- v• = 0.6 _+ 0.1. 
Using the hyperscaling relations ~=vtt + v •  s and vltrt~ s Rs = V • 1 7 7  , 

the results given in (4) imply r/~ s = 1 - (7/v• - v iJv•  = 213/v• = 0.44-0.46, 
which is consistent with direct evaluation. Results in (4) are thus consistent 
with Vii ~ V •  ~ 1 ,  RS RS r/i I ,~r/• ,~0.45, f l~0 .22,  and 7 g  1.55. 

Next we consider the full scaling behavior of the subsystem suscep- 
tibility and magnetization. If we take v• and 7/vtl (or fl/vii for the 
magnetization) as two free parameters, many values can give apparently 
"good" scaling plots. The data seem most consistent with v• being close 
to I. They are thus is accordance with results in the previous subsection, 
r/~ s ~r/Rs,• if the scaling relation vtt~/~s = v• is invoked. Figures 15 and 
16 show data collapsing using the following choice of exponent ratios: 

v• = 1.0, [3/vti = 0.22, ~;/vlt = 1.55 (5) 

Fig. 13. 

2 -  

h0 ~ -  
o 

? 

o J m------ 

o. 
o 

1 . 0  2'. 0 3 t. 0 4'. 0 5'. 0 6 ~. 0 7'. 0 8.0 

log2 Li 

Subsystem susceptibility plotted against L~_ for given L H at K =  0.342. The curves 
are guides for the eye. From bottom up: Lit = 4, 8, 16, 32,.., 4096. 
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Fig. 15. 
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log 2 L• 
Subsystem magnetization plotted against L• for given LII at K=0.342. The curves 

are guides for the eye. From top down: E l i  = 4 ,  8 ,  16, 32,..., 4096. 
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log2(L•  

Subsystem scaling plot .~L~ ~/~ vs. L• -/vH, with 7~vii = 1.55, Vz/Vll=l, taking 
subsystems of size up to 1024 x 32. 
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Figure 17 is a plot of the reduced fourth moment against L•  for each 
L ll. We notice that the peak formed by the envelope of curves occurs at 
LHJL • ,,~ 10, indicating that the system is most ordered in such a geometry. 
These scaling plots should be compared with similar plots for the Ising 
model.(16) 

2.4. Scaling of Fully Periodic Systems 
. n n 2.4.1 Systems with Sizes LII- L• We also carried out a finite- 

size scaling analysis with fully periodic blocks, choosing L• = 3, 4, 5, 6 and 
Lit = L 3, as well as L• = 4, 6, 8, 10, 14 and LIE = L 2, thus choosing integer 
exponents n = 2, 3, 4 in the relation L H = L~.  Finally, the cases L~ = 3, 4, 
5 and Lll = L 4, and L• = 4, 8, 16 and Lit = L• were also treated. We now 
expect that in a plot of g vs. K a unique intersection point will occur for 
Lil ~ L ~  ~/vi. This property is tested in Fig. 18. It is seen that for Lll = L• the 
g vs. K curves for different linear dimensions have no intersection anywhere 

Fig. 16. 
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Subsystem scaling plot  <1 gtl )L~/vii vs. L•177 Here fl/vll = 0.22, v• = 1, taking 
subsystems of size up to 1024 • 32. 
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in the temperature region where T C should occur (i.e., in between K =  0.33 
and 0.35). The curves intersect at much too low a temperature (K=  0.36). 
For L t t = L ~ ,  on the other hand, intersection points are found for 
K = 0.34-0.35. These values of K are comparable with other estimates of the 
critical temperature. For Lll = L 3 and L 4 the intersections occur again at 
lower temperatures ( K =  0.35 and 0.36, respectively). This behavior of g is 
quite different from its behavior in subsystems (Fig. 12) where good inter- 
section points occur. The corresponding temperature is insensitive to the 
choice of vlt/v • and is in the range of the correct Tc. This difficulty of the 
fully periodic systems could be caused by the high anisotropy in the 
amplitudes of singular quantities. If vrl = v• is true, the system will look 
isotropic if the longitudinal distance is shrunk by a factor of 10. That 
means a uniformly ordered system at low temperature is a system for which 
L•  The fourth moments of such systems should intersect at a 
unique point. On the other hand, the behavior of g for fully periodic 
systems suggests that vH/v • is close to 2 or 3. 

-7.5 -6'.0 -4'.5 -3'.0 -i'.5 0'.0 I'.5 3'.g 4,5 

log  2 (L• 

Fig. 17. Subsystem fourth moments g vs. L• taking subsystems of size up to 256 x 32. 
From bottom up, LII =4,  8, 16,..., 256. 
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Table I. Effective Exponents from Scaling of 
Finite Periodic Systems at K c ~ 0.342 

n fl/v H y/Vll v• v •  1/n 

1 0.43 1.32 1.18 0.18 
2 0.26 1.15 0.67 0.17 
3 0.28 1.14 0.7 0.37 
4 0.45 1.0 0.9 0.65 

We looked at how consistent the exponents are for each given n. The 
exponents 7/vti and t~/vlr are obtained from the size dependence at 
Kc~0.342. In Table I we list these effective exponents. In the fourth 
column we have Vz/Vtt, calculated from a hyperscaling relation. The last 
column gives the difference of the calculated value in the fourth column 
and the assumed value 1/n. If the choice of n is correct, we should have 
zero in the last column. It is seen that none of the choices is very consistent. 

L 

Fig. 19. 

o 

>4 

43 

1.0 2'.0 3'.0 4'.0 5'.0 6'.0 7.0 

log 2 L• 

Susceptibility at K=0.342 of fully periodic finite systyems plotted against L• for 
given Li4 = 2", from bottom to top, where n = 2, 3, 4, 5, 6. 
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2.4.2. Scaling of Susceptibility and Magnetization. We 
carried out a finite-size analysis for the susceptibility and magnetization of 
periodic systems with sizes 2"x 2% n, m = 2, 3, 4, 5, 6. The predictions of 
finite-size scaling (16) in this case are 

Z(Tc)  oc Z~(',l, <1~1 )To oZ L~( 2v'' - 1/2L~2, Ltt ~ L~ ~/v~ (6) 

z(Zc) oc Z~ v-L, <1~1)~ oc L (  2v• 1/2LI(2 , LII < t ~  I/vj- (7) 

Figures 19 and 20 are plots of the susceptibility and magnetization of those 
systems. Applying formula (6) to the data, we found 7~Vat ~.. 1.0 from the 
susceptibility in the large-L, limit, where the susceptibility becomes inde- 
pendent of the dimension L . .  The growth of these saturation values with 
the size Ltl gives the exponent 7/v11. This choice of ?~vii is fully consistent 
with the size dependence of the order parameter, where <1~1 ) has no Ltt 
dependence and the trivial square-root dependent on L• is observed. This 
implies 2fl/vlt ,~ v• from the hyperscaling relation. Using vtt = 1, fl --- 0.22, 
we then have v• The other limiting behavior, LHi>>LV~ I/v• is 

Fig. 20. 
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Magnetization of fully periodic finite systems plotted against L• for given LII at 
K =  0.342. The sizes are the same as in Fig. 19. 
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difficult to obtain. Figures 21 and 22 are scaling plots with the above 
exponents: the quality of the data is not very good. 

Apparently, there is a discrepancy between the subsystem result and 
the fully periodic one; cf. discussion in the last section. 

2.5. Cor re la t ion  Length of  a St r ip  

The scaling theory (~6) predicts that the correlation length at Tc of an 
infinitely long strip perpendicular to the field direction behaves as 
~o  ~_ a.L[ti/~H, and similarly r ~_ ajtL~_l/~i for a strip along the field direc- 
tion. The correlation function itself has to scale like 

G •  ~- LIT",~ s ~•162 ~ (8) 

for a strip perpendicular to the field and 

c,,(z) - tZ~ ~ ~,,(z/~,) (9) 

? 
-i.0 0'.0 I'.0 2',0 3'.0 4'.0 5'.0 6.o 

log2(L~/L~.44) 

Fig. 21. Fully periodic system scaling plot zLpTY/v, vs. L• with y/vtl = 1, v• H = 0.44. 
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for the other orientation. The standard Ising model obeys these scaling 
forms.  (17) In principle, such an analysis can given good estimates of the 
ratio of the v and t/ exponents. If we allow Tr Tc data to go into the 
analysis, we can also find v H or v• individually. 

For  p = 0.I the correlation length ~ is very long. When L• = 4, it is 
of order 60. Due to such long correlation lengths, we were unable to obtain 
reliable data. However, the method works better for the p = 0 case, which 
we shall discuss in the next section. 

3. PURE DRIVEN K A W A S A K I  M O D E L  

The correlation functions for this system become negative at large 
distances due to particle number conservation. This effect is particularly 
severe for strips perpendicular to the field and makes it difficult to extract 
reliable information. Therefore we consider the strip geometry along the 
field only. The strong effect of the strip width can be seen from the fact that 

7 
-i.o o'.o 6.o 

%--~- 
m 

v 

~ 

I'. 0 2 ~. 0 3'. 0 4'. 0 5'. 0 

l o g 2 ( L •  "44) 

Fig. 22. Fully periodic subsystem scaling plot <1~1 >L~l/~ll vs. Li /L[ r  Iv". Here fl/Vll =0.22, 
v • ll = 0.44. 
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for a strip with linear dimensions 256 x 3 the correlation function at 
K=0.325,  which corresponds to K c ( p = 0 ) ,  (5/ looks exponential with a 

decay length 1.2. This is in contrast to the p = 0.1 case, where for such a 
strip at Kc(p = 0.1) the correlation length is of order 50. Figure 23 is a plot 
of the correlation function Gtt(z ) for Lii =256 and L• =6 ,  10, 12, and 14. 
Good quality data are obtained. The correlation function clearly decays 
exponentially at large distances. 

In Fig. 24 we plot the correlation length obtained from the slope in 
Fig. 23 vs. strip width L• In the same plot we also plot data for K =  0.33. 
For L• < 12 the difference in temperature makes little difference in the 
correlation length. But the difference becomes big for larger sizes. On the 
other hand, the data for L• > 12 are less reliable due to long correlation 
times and finite Lll. For  L• = 2 0  the correlation length ( ~  ~100)  is 
already comparable with the total system size (L H --- 512). Considering only 
6-~<L• we have from the slope vt]v• Assuming that the 
amplitude of the exponential decay goes with size as L2  ~s, we deduce 

Rs r/~s~ 1. Figure 25 is a scaled plot with those exponents. Using vltt/tl = 

~o 

' 0  
r--t 

Z 

Fig. 23. Correlation function Gir(z ) for a strip parallel to the field. ([]) L~ = 6, (�9 L• = 10, 
(~) L• = 12, ( x ) L~ = 14. Longitudinal dimension LII is 256. 



~ o  

/ 
/ 

o/ 
. /  

~ o  

~2,~i 0 o . . . . . . . . . .  1,0 ~ 
L. 

Fig. 24. Correlation length ~L' obtained from Fig. 23 by considering an exponential decay, 
vs. strip width L• in log- log scale. Squares are for K =  0.325, circles are for K =  0.33. 

' o  

q- 

' o  
. . . . . . . .  ~ 1 0 _  ~ . . . . . . . . . . .  1 , 0 0  r . . . . . .  

Fig. 25. Scaling plot LjGII(z) vs. z/~l. 
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~o 

'o 

" 1 0  ~ . . . . . . . . . . .  i'0 ~ . . . . . . . . . .  ?0' ' ' 

z 

Fig. 245. Correlation functions of a system of size 256 x 64 (upper) and 512 x 64 (lower) for 
p = 0 at K =  0.325. ( � 9  Longitudinal correlation, ( [ ] )  transverse. 

v~r/~ s, we have r/~s~0,45. This is more or less consistent with direct 
calculation on large systems (128x64, 512x64) giving r/4 t -  gs"~0.4,,~ (see 
Fig. 26). [For  the transverse correlation only the first two data points 
(x~<2) seem reliable, so we cannot compute t/~_ s directly.] However, a 
direct estimate from the slope in Fig. 25 gives ~/~s~0.53. A possible 
explanation is that the critical coupling Kc at p = 0 is not as accurately 
located as that for p=0 .1 .  This could alter the value vJv• Actually, we 
see from Fig. 26 that the longitudinal correlation curves are not at all 
straight lines, which indicates that the temperature is probably a bit too 
low. 

4. SIMULATION RESULTS A T p = I / 2  

The results of the previous sections indicate that the model with 
p=0 .1  already has isotropic critical exponents but very anisotropic 
amplitudes, and therefore is hard to analyze. This difficulty should be less 
serious for a larger value of p. We simulated the same model at p--1/2.  
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From the 128 x 64 data, we have an estimate Kc = 0.395. We see again that 
the transverse and longitudinal t /exponents are the same, r/~s~ 0.32. The 
two-point correlations would be approximately isotropic if the distance in 
the longitudinal direction is normalized from z to --*z' =0.6z, which is 
again close to pz as for the p = 0.1 case. For this reason we consider sub- 
systems of block size (Lit, L• =Ltl /2  ) with Ltt =8 ,  16, 32, 64, 128. Using 
the result r/~s= RS r/•  which implies v jl = v• = v from the scaling relation, we 
find 7Iv = 1.65, fl/v = 0.16. The set of exponents is close to but still different 
from the Ising exponents q =0.25, 7/v = 1.75, ~/v =0.125. The exponents 
thus seem to depend in a continuous fashion on p: but it is quite possible 
that, due to crossover problems, we observe "effective exponents" only. 

5. DISCUSSION 

Our computer simulation study suggests: (1) for p =0.1, vii ~ Vv = 1, 
and ~/~s~ r/RS__ 0.45, /~ ~ 0.22 and 7 ~ 1.55. The anisotropy then lies in the 
amplitudes. (2) For  p = 0, we have vtt > v• with the ratio probably close 
to 2. However, we consider our results for p = 0 inconclusive due to 
difficulties in bringing large systems to a stationary state. 

As we have noted, the above behavior is not consistent with a scaling 
analysis of finite periodic systems. Such an analysis would lead us to believe 
that vtt > v• even for p = 0.1. In fact, the fourth moments discussed in Sec- 
tion 2.4.1 and the finite-size scaling in Section 2.4.2 are consistent with 
vtt/v • ~ 2, but not with 1. This inconsistency is probably due to crossover 
effects which might introduce another length scale, controlled by p, such 
that for smaller lengths the system behaves essentially as it does at p = 0. 
More theoretical as well as computer work is clearly necessary for these 
systems. 

A P P E N D I X A .  CONSTRUCTION OF SUITABLE "ORDER 
PARAMETER C O M P O N E N T S "  

In this Appendix we wish to analyze finite-size effects near the phase 
transition to the ordered phase for systems where the global order 
parameter is conserved (typically it is fixed at zero, its value in the disor- 
dered phase of the system). Examples of such systems are the Kawasaki 
spin-exchange Ising problem ~11) or its generalization where one applies an 
"electric field" E in one lattice direction, which has been called the z 
direction,~l 8) and of course also real fluids with a fixed particle number 
and volume. 

Due to the constraint that the global order parameter is zero, the 
ordered state of the system is necessarily nonuniform. As discussed briefly 
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earlier, (z~ the precise nature of this nonuniformity depends on the bound- 
ary conditions, as well as on the shape of the system. (21) Here we are inter- 
ested in a d-dimensional hypercubic lattice with a linear dimension Lll in 
the z direction and a linear dimension L• in the remaining d - 1  lattice 
directions. 

Figure 27 shows the expected ordered states for d =  2, both for free 
and for periodic boundary conditions, and Fig. 28 the analogous situation 
for d =  3. Note that we wish to consider situations where both Lrt and L• 
are much larger than the correlation length (or lengths, respectively, if the 
system is intrinsically anisotropic): then the domain configuration which 
must result from the principle that in thermal equilibrium the free energy 
is minimized is determined by the condition that the total interfacial free 
energy ("interfacial tension" times the interface area) is minimized, which 
means that the minimum number of interfaces occur consistent with the 
boundary conditions (i.e., one interface in the case of free boundary condi- 
tions, two interfaces for periodic boundary condition). 

Although no such thermodynamic minimization principle exists for the 
far-from-equilibrium situation in the case where E r  0, we assume  as a 

work ing  hypothes i s  that the states characterizing the stationary probability 
distribution have a correspondingly minimized number of interfaces. 

For the simple Ising problem on the square lattice with E =  0 and 
uniform exchange interaction J, the solution will be provided by cases (a) 
and (b) if one has Lit > L j_ for the free boundary conditions, and (e) for 
periodic boundary conditions, while for Lit < L• cases (c), (d), or (f) will 
be the correct solution. While the free boundary condition breaks transla- 
tional invariance and therefore the interface must occur (for zero total 
order parameter!) always midway in the system, the periodic boundary 
condition still maintains translational invariance: i.e., one interface coor- 
dinate (zl in the case of Fig. 27e, xl in the case of Fig. 27f) can be chosen 
freely; the coordinate of the second one then follows from the condition 
that the total order parameter is zero. 

This extra translational degree of freedom for the interface position in 
the case of periodic boundary conditions has the consequence that it is 
easier to understand the free boundary case, and that is what we hence 
attempt to do first. We define transverse and longitudinal order parameters 
~• ~ll as follows (we consider only the case where L• L H are even 
integers, the lattice spacing being unity): 

v-'• = s(x, z ) -  
L l l L l  = 

x = l  z 1 z = L 11/2 + 1 

1 fL~ 2 L• 
- s(x,  z ) -  y ,  

~rJll LIIL• 1 x = l  x = L •  

s(x, z)} (A.1) 

s (x ,  z)} (A.2) 
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Note that the degeneracy between (a) and (b) [or (c) and (d), respec- 
tively] just means a sign change of the order parameters, and the order 
parameters are normalized to unity in a perfectly aligned configuration. 

The equivalent definitions for a lattice of dimensionality d=  3 are 
easily written down, observing (Fig. 28) that two parallel components gt}~), 
~ul~) need to be considered: 

1 21 } = ~ ~ s(x, y, z ) -  ~' s(x, y, z) (A.3) 
~• LllL =~ y=~ ~=1 ~=LW2+a 

Lr~ IP Lii + - + 

- + 

) 

L• L• L• L j_~2 L• 

f) 
e) L• 

]i II :! Lll + LII/2 Lll 

- -  Z 1 

LC 
L• xl L• L• - ~ 1  

z 

r 

+_2__ 

+ 
f 

+ 

L l  

Fig. 27. Domain configurations of a two-dimensional Ising model below T c, assuming a con- 
straint that the total magnetization is zero, for free boundary conditions [case (a)-(d)]  and 
periodic boundary conditions [(e), ( f ) ]  in a geometry L~ x Lit. It is assumed that all lengths 
Lil, L• are much larger than the correlation length(s) of the system, and that the ratio LJL• 
neither approaches zero nor infinity, and thus multidomain-configurations [for example, case 
(g)] need not be considered. For more explanation, see text. 
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~ ( l )  = 1 L• LEI ( L •  L• 

E E J E ~(x, y, z)-  E s(x, y, z)j (A.4) 
FI LIILiy=I z = l  k x = l  x = L •  

1 r l  LII ( L •  L• ) 

~I~)-LIIL~ Z ~, t 2  s(x,y,z)- Z s(x,y,z)I (A.5) 
x = l  z = l  k y = l  y = L •  

I t  is qui te  obvious  how those  defini t ions are general ized to a d-d imens iona l  

hypercub ic  geometry ,  with then ( d - 1 )  o rder  p a r a m e t e r  "componen t s "  
~ u )  in add i t i on  to one pe rpend icu la r  c o m p o n e n t  ~ •  

I 1 '  

e - - - - - - - - - A _ _ )  

LII tt Lll ' i 

. / �9 x ]/ . . . .  , 

, , ~ L i / 2  L• Li/2 L• 

d) e) 

l ~ i  . . . .  t I { ' :  I : : i i  

L L zl L• L• 

L L I ,  

Z 

L~ Y1 

Fig. 28. Domain configuration of a three-dimensional Ising model below To, assuming a 
constraint that the total magnetization is zero, for free boundary conditions l-case (a)-(c)] 
and periodic boundary conditions [(d)-(f)], in a geometry L•215177215 In the free 
boundary cases, two sign assignments for the magnetization in the domains are indicated. For 
further explanation see text. 

822/56/5-6-17 
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It is conceivable to carry over these definitions to the periodic bound- 
ary case, but then the extra degree of freedom characterizing the interface 
position will show up explicitly. For example, for the two-dimensional case 
this would yield 

1 Lx~=I { z t  + LII/2 -- 1 

gt• • , z~=~l 

1 f xl + L~/2 1 
~tH( x1) = LII L • x= xl 

z 1 + LII 1 ) 

s(x, z ) -  ~ s(x, z) t (h.6) 
z = Zl + L kl/2 

Xl + L I  1 ) 

s(x, z ) -  ~ s(x, z) t (A.7) 
x = x t + Ls  

where coordinates z > L i i ,  x > L •  are reduced to z - L I I ,  x - L •  by the 
periodic boundary condition. Similar equations could be written down for 
d =  3 and periodic boundary condition as well. 

However, since we ultimately are interested in an application of these 
concepts to numerical work (Monte Carlo or molecular dynamics calcula- 
tions, if one considers continuum instead of lattice problems), we avoid 
considering order parameters such as Eqs. (A.6) and (A.7) which contain 
explicit information on the interface position. Instead of projecting the 
spin configuration with the Heaviside step function 1 - 2 H ( Z - Z l ) +  
2 H ( z -  zl - LLI/2), or 1 -- 2 H ( x -  xl) + 2 H ( x -  xl -- LII/2), with 
H(z > 0) = 1 while H(z < 0) -- 0, which is the meaning of Eqs. (A.6)-(A.7), 
we project the spin configuration with sin r and cos r functions: although 
each of these harmonic functions is of course sensitive to the choice of a 
"phase" and hence to the interface position (zl or x0 ,  the property 
sin 2 r + cos 2 r = 1 independent of r means that out of the two components 
formed with sin r and cos ~o we can form a mean square order parameter 
for both the longitudinal and the transverse order parameters. For this 
purpose, the gauge of the phase is irrelevant, and hence we define (N is a 
normalization factor) 

s(x, z) sin (A.8) 
~• -LIIL• z=l \LII /I 

7J~~177 x=l ~ z=l~" s(x,z)cos z (A.9) 

rl - L I I L •  ~ z=l~ s(x ,z)s in x (A.10) 

N Ll 
~I~~177 x=,E ~=~E s(x,z) cos x (A.11) 
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We determine the normalization factor N by considering the geometry of 
Fig. 27e) and a perfectly aligned spin configuration, where s(x, z)=-1, 
1 ~< z < zl, and zl + Lli/2 ~< z ~< Lil, and s(x, z) = +1, otherwise. To find 

N{Zl+C~=i-lsin(2rCz)_~sin(2rt ) L,r . (2~ )} 
Vl~zn) = LI-- ~ ~ ~LI[ J ~ z -- zl +ELI1/2 sin ~ z 

(A.12) 

w(cos) __N {Zl+L__~]-, cos (2~ z'] _ ~zl cos (2~z~ _ ~cll cos (2~ z)} 
--rl --LI I \LII J 1 \Lit  fl Zl+Lii/2 

(A.13) 

Since we wish to consider L l i - - *  ~ ,  L~ ~ ~ ,  in Eqs. (A.12) and (A.13) the 
sums may be converted to integrals: 

N{y~ ~+LH/2 (2~1~) - -  sin z dz 

�9 2~ _fLH (21rz~dz } -;o~Sm(-L-~H) dz sin 
zl + LIL/2 \ Ltl ,/ 

= 4 ~--~ COS (2/ZZl~ (A. 14) 
\ LII / 

N~rzl+LH/2GOS(2~2~dz 
\LH / 

: 4 ~ sin (2rczl) (A.15) 
\ L, / 

Thus we find 
N 2 

[ W(sin)t. ]q2 -- (A.16) - - l l  '~"J  + [~l~~ z (rc/2)2 

independent of zl and the linear dimensions, as desired. Normalizing the 
ordered state described above to a mean square order parameter of unity 
yields the normalization factor 

N=rc/2 (A.17) 

Considering instead of.Fig. 27c the geometry of Fig. 27f, the calculation is 
identical, with z replaced by x and Ljl by L• 
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~(sin) rt/2 L• 
• LIILa-1 xl = l  

r~/2 L, 

x i = l  

L• 
~(sinj) _ r~/2 

II LIIL~-I ~' 
Xl= 1 

I I / ( C o s ,  j )  - -  _ _  

I1 

We now write down the definitions analogous to Eqs. (A.8}-(A.11) for 
higher dimensionality d, 

�9 -" ~ ~, s(x,,..., xa 1, z) sin z (A.18) 
Xd_l=l  z = l  

L, L,, (2re z)  
' "  Y" ~" ( s (x l ' ""xa-"z )  cos \ 7--~ll J (a.19) 

Xd-t=  I z = l  

"'" 2 2 s(xl,...,xd_l,z)sin xj , 
Xd_l=l  z = l  

j = 1 ..... d -  1 (A.20) 

LI,LaS1 Z "'" Y'. • s(x,,...,xa , , z ) c o s  x j ,  
x l = l  Xd_ l~ l  z = I  

j =  1 ..... d -  1 (A.21) 

In summary of this section, we propose to use as "order parameter 
components" all possible Fourier transforms of the spin field with the 
smallest possible wavevectors, which are oriented in the various lattice 
directions. For an isotropic Ising model without electric field, i.e., the 
ordinary Kawasaki spin exchange Ising model, all these "components" 
obviously are equivalent, and the quantity to consider is simply 

d--1 
~ 2 =  ~ 2  + ~ ~v~,(j) (A.22) 

j = l  

�9 rtu( ..... )q2 (A.23) ~_/~(j)  = [ t~_.tl~ . . . .  ) 32q_  L- - I I  J 

In the case with electric field, however, components g*~ and g~ are no 
longer equivalent; only the components gz~(j) are relevant; then all these 
components are of course equivalent, and hence we shall consider 

d--1 

~ = y~ ~ ( j )  (A.24) 
j = l  

If we consider the average value ( ~ 2 )  r, we can see directly from the 
definition, Eq. (A.18), that [denoting by s(kv) the complex Fourier trans- 
form of the spin field s(x)]  

d d 

(~JZ)TOC E (s(-k~)s(kv))r/(LrlLaS ')= ~ S(k~)/(Lll LaSx) (A.25) 
v = l  v = l  

with kv being the wavevectors (2n/Lll)(1 ..... 0,0), (2rt/Lii)(0, 1 ..... 0) ..... 
(2n/Ltl(O ..... 0, 1). For T >  Tc (and no electric field) this correlation func- 
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tion is just the static susceptibility kB TX, apart from corrections of order 
(kv~) 2 which are negligible for large enough Lfl, L• Below Tc, it also is 
completely clear that (~u2) basically is proportional to the square of the 
spontaneous magnetization in the Ising model. 

For the case including the electric field the contribution due to ~u• is 
nonordering and hence should be omitted, which means we have to omit 
kd from Eq. (A.25) [kd= (2zc/L• ..... 0, 1), S(k) is the standard "structure 
factor"], 

( V2)T oc S(kv)/(LirL d- ') (A.26) 

Qualitative evidence consistent with this description can be found in 
Figs. 4 and 7 of ref. 3, where for d = 2  Eq. (A.26) was obtained for 
L = Lit = L •  = 30, as well as a different measure for the order parameter 
("comparing the difference between the average of the magnetization 
squared in the vertical columns and horizontal rows and dividing the result 
by L2"). 

In Monte Carlo simulations of ( ~ 2 ) r ,  care must be taken at T<  Tc 
that nonequilibrium results (due to multidomain configurations) are 
avoided. This can be done, for instance, by starting the system initially in 
a perfectly aligned configuration of the type shown in Fig. 27f or Fig. 28e, 
respectively, which then is relaxed while "equilibrium" is achieved. 

A P P E N D I X  B. " L O C A L "  V E R S U S  GLOBAL 
ORDER P A R A M E T E R S  

In previous work 
suggested, namely 

(e.g., ref. 3) a different "order parameter" was 

Ap ( AAr2 - -  AAr2 ] 1/2 (B.1) 

where "vertical" and "horizontal" magnetizations My and M h are defined in 
terms of the local magnetization m(x, y, z) of each site x, y, z of a three- 
dimensional lattice via 

M~= 1-~- F 1 m(x, y,z) (B.2) 
L2x. =l[-LIrz=l 

1 
M~ = - -  

Zjl 
[ Ll 12 Y" m(x, y, z) (B.3) 

1 x , y = l  
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Why did we spend the effort in going through the discussion of Appendix A 
in constructing the description in terms of "order parameter components" 
instead of simply using Eqs. (B.2) and (B.3)? 

The answer to this question is that Eq. (B.1) is in a sense a "local" 
order parameter only, measuring the order parameter difference between 
domains in any kind of "strip" domain arrangement (i.e., domains running 
through the system in the z direction), but is completely insensitive to the 
size and arrangement of these strip domains. 

To show this assertion, we define an idealized strip domain structure 
via 

m(x, y, z)= mof(x, y) (B.4) 

where m0 is the absolute value of the magnetization inside the domains and 
the function f (x ,  y) describes the sign of the magnetization 

f (x ,  y)= +1, ~ f(x,  y )=0 (B.5) 
X, y 

The second condition results from requiring that there is no average 
magnetization; which sign at site (x, y) actually is realized depends on 
the particular choice of strip configuration. Using Eqs. (B.4) and (B.5), it 
is trivial to show that 

2 m 2, Ap=mo (B.6) M =0, = 

irrespective of the value of f (x ,  y). Thus, Ap measures the local order 
parameter inside a strip; it is independent of the width of the strips. In the 
standard Kawasaki model, this would correspond to measuring the local 
order parameter inside the (on average spherical) domains. 
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